Disclaimer

We hope you find the information on our website and resources useful.

Animations

This resource has been designed with animations to make it as fun and engaging as possible. To view the content in the correct formatting, please view the PowerPoint in 'slide show mode'. This takes you from desktop to presentation mode. If you view the slides out of 'slide show mode', you may find that some of the text and images overlap each other and/or are difficult to read.
To enter slide show mode, go to the slide show menu tab and select either from beginning or from current slide.

 Maths
 Multiplication and Division

Tie REENTSUDES

Prime Factors

Aim

- To find prime factors of 2 -digit numbers.

SuccessCriteria

- I can find factors of 2 -digit numbers.
- I can recognise prime numbers.
- I can write a calculation to match my drawing.

List all the factors that you can find for the numbers below.

How could you organise your findings so that you can be certain that you have found all the possible factors?

Click to reveal the factors.

$$
\begin{aligned}
& 1 \times 24 \\
& 2 \times 12 \\
& 3 \times 8 \\
& 4 \times 6
\end{aligned}
$$

They are called prime factors because:

- They are prime numbers.
- This means they are numbers which have only (1 and themselves).

Which type of numbers has she created branches from?
She has created branches from the composite numbers.
Why has she circled certain factors?
She has circled these factors because they are prime factors.
Why has she not created branches from the numbers 2 and 3 ?
She has not created branches from 2 and 3 because they are prime factors.

Discuss:
Which type of numbers has she created branches from?
She has created branches from the composite numbers.
Why has she circled certain factors?
She has circled these factors because they are prime factors.
Why has she not created branches from the numbers 2 and 5 ?
She has not created branches from 2 and 5 because they are prime factors.

Factor Trees

Complete the factor trees with a partner. Can you spot the prime factors? Make sure you circle them!

Remember to:
Only create branches from composite numbers.
Circle numbers which are prime factors.

Feeling confident? Have a go at creating your own factor trees for the following numbers.

$324454 \quad 68$

Check your answers!

2 and 3 are prime factors of 18.

2 and 7 are prime factors of 28.

Check your answers!

Check your answers!

Let's go back to Jenny's factor tree.

> After I have created a factor tree, I can write a calculation to show how the prime numbers are multiplied to create the product.

$$
2 \times 2 \times 3=12
$$

Can you write the calculations for the factor trees below? Discuss your calculation with a partner.

Find Prime Factors

Diving into Mastery

Dive in by completing your own activity!

Is the above statement: always true, sometimes true or never true?

The above statement is always true.

$$
\text { An example: } 2 \times 3=6
$$

If we multiply two prime numbers, we instantly give the product two factors in addition to 1 and itself. Therefore, it is a composite number.

Aim

- To find prime factors of 2 -digit numbers.

Success Criteria

- I can find factors of 2 -digit numbers.
- I can recognise prime numbers.
- I can write a calculation to match my drawing.

